This list includes fossils that are important for either their scientific or historic interest, or because they are often mentioned by creationists. One sometimes reads that all hominid fossils could fit in a coffin, or on a table, or a billiard table. That is a misleading image, as there are now thousands of hominid fossils. They are however mostly fragmentary, often consisting of single bones or isolated teeth. Complete skulls and skeletons are rare.
The list is sorted by species, going from older to more recent species. Within each species, finds are sorted by the order of their discovery. Each species has a type specimen which was used to define it.
Each entry will consist of a specimen number if known (or the site name, if many fossils were found in one place), any nicknames in quotes, and a species name. The species name will be followed by a '?' if suspect. If the fossil was originally placed in a different species, that name will also be given.
The following terminology is used. A skull refers to all the bones of the head. A cranium is a skull minus the lower jaw. A braincase is the cranium minus the face and upper jaw. A skullcap is the top portion of the braincase.
Abbreviations: ER East (Lake) Rudolf, Kenya WT West (Lake) Turkana, Kenya KP Kanapoi, Kenya SK Swartkrans, South Africa Sts,Stw Sterkfontein, South Africa TM Transvaal Museum, South Africa OH Olduvai Hominid, Tanzania AL Afar Locality, Ethiopia ARA-VP Aramis Vertebrate Paleontology, Ethiopia BOU-VP Bouri Vertebrate Paleontology, Ethiopia TM Toros-Menalla, Chad
TM 266-01-060-1, "Toumai", Sahelanthropus tchadensis
Discovered by Ahounta Djimdoumalbaye in 2001 in Chad, in the southern
Sahara desert. Estimated age is between 6 and 7 million years. This is a
mostly complete cranium with a small brain (between 320 and 380 cc).
(Brunet et al. 2002, Wood 2002) It has many primitive apelike features, such
as the small brainsize, along with others, such as the brow ridges and
small canine teeth, which are characteristic of later hominids.
"ARA-VP, Sites 1, 6 & 7", Ardipithecus ramidus
Discovered by a team led
by Tim White, Berhane Asfaw and Gen Suwa (1994) in 1992 and 1993 at Aramis
in Ethiopia. Estimated age is 4.4 million years. The find consisted of
fossils from 17 individuals. Most remains are teeth, but there is also a
partial lower jaw of a child, a partial cranium base, and partial arm bone
from 2 individuals.
ARA-VP-6/1 consists of 10 teeth from a single individual.
ARA-VP-7/2 consists of parts of all three bones from the
left arm of a single individual, with a mixture of hominid and ape
features.
ARA-VP-6/500, "Ardi", Ardipithecus ramidus
Discovered by a team led by Tim White in 1994 at Aramis in
Ethiopia (White et al. 2009; Gibbons 2009). Its
age is about 4.4 million years. Ardi is a spectacularly complete fossil.
About 45% of her skeleton was found, including most of the skull,
pelvis, hands and feet, and many limb bones.
She was about 120 cm (3'11") tall and weighed about 50 kg (110 lbs).
KP 271, "Kanapoi Hominid", Australopithecus
anamensis
Discovered by Bryan Patterson in 1965 at Kanapoi in
Kenya (Patterson and Howells 1967). This is a lower left humerus which is
about 4.0 million years old. (Creationist
arguments)
KP 29281, Australopithecus anamensis
Discovered by Peter Nzube in 1994 at Kanapoi in Kenya (Leakey et
al. 1995). This is a lower jaw with all its teeth which is about
4.0 million years old.
KP 29285, Australopithecus anamensis
Discovered by Kamoya Kimeu in 1994 at Kanapoi in Kenya. This is a
tibia, missing the middle portion of the bone, which is about 4.1
million years old. It is the oldest known evidence for hominid
bipedalism.
AL 129-1, Australopithecus afarensis
Discovered by Donald Johanson in 1973 at Hadar in Ethiopia
(Johanson and Edey 1981; Johanson and Taieb 1976). Estimated age is about
3.4 million years. This find consisted of portions of both legs, including
a complete right knee joint which is almost a miniature of a human knee,
but apparently belongs to an adult.
AL 288-1, "Lucy", Australopithecus
afarensis
Discovered by Donald Johanson and Tom Gray in 1974 at Hadar in
Ethiopia (Johanson and Edey 1981; Johanson and Taieb 1976). Its
age is about 3.2 million years. Lucy was an adult female of about
25 years. About 40% of her skeleton was found, and her pelvis,
femur (the upper leg bone) and tibia show her to have been
bipedal. She was about 107 cm (3'6") tall (small for her
species) and weighed about 28 kg (62 lbs). (Creationist arguments)
AL 333 Site, "The First Family",
Australopithecus afarensis?
Discovered in 1975 by Donald Johanson's team at Hadar in Ethiopia
(Johanson and Edey 1981). Its age is about 3.2 million years.
This find consisted of remains of at least 13 individuals of all
ages. The size of these specimens varies considerably. Scientists
debate whether the specimens belong to one species, two or even
three. Johanson believes they belong to a single species in which
males were considerably larger than females. Others believe that
the larger specimens belong to a primitive species of Homo.
"Laetoli footprints", Australopithecus
afarensis?
Discovered in 1978 by Paul Abell at Laetoli in Tanzania.
Estimated age is 3.7 million years. The trail consists of the
fossilized footprints of two or three bipedal hominids. Their
size and stride length indicate that they were about 140 cm
(4'8") and 120 cm (4'0") tall. Many scientists claim
that the footprints are effectively identical to those of modern
humans (Tattersall 1993; Feder and Park 1989), while others claim
the big toes diverged slightly (like apes) and that the toe
lengths are longer than humans but shorter than in apes
(Burenhult 1993). The prints are tentatively assigned to A.
afarensis, because no other hominid species is known from
that time, although some scientists disagree with that
classification. (Creationist
arguments)
AL 444-2, Australopithecus afarensis
Discovered by Bill Kimbel and Yoel Rak in 1991 at Hadar in
Ethiopia (Kimbel et al. 1994). Estimated age is 3 million years.
This is a 70% complete skull of a large adult male, easily the
most complete afarensis skull known, with a brain size of
550 cc. According to its finders, it strengthens the case that
all the First Family fossils were members of the same species,
because the differences between AL 444-2 and the smaller skulls
in the collection are consistent with other sexually dimorphic
hominoids.
KNM-WT 40000, Kenyanthropus platyops
Discovered by Justus Erus in 1999 at Lomekwi in Kenya (Leakey et al. 2001, Lieberman 2001). Estimated age is about 3.5 million years. This is a mostly complete, but heavily distorted, cranium with a large, flat face and small teeth. The brain size is similar to that of australopithecines.
This fossil has considerable similarities with, and is possibly related to, the habiline fossil ER 1470.
Taung 1, "Taung Child", Australopithecus africanus
Discovered by Raymond Dart in 1924 at Taung in South
Africa (Dart 1925). The find consisted of a full face, teeth and jaws, and
an endocranial cast of the brain. It is between 2 and 3 million years old,
but it and most other South African fossils are found in cave deposits that
are difficult to date. The teeth of this skull showed it to be from an
infant about 5 or 6 years old (it is now believed that australopithecines
matured faster than humans, and that the Taung child was about 3). The
brain size was 410 cc, and would have been around 440 cc as an adult. The
large rounded brain, canine teeth which were small and not apelike, and the
position of the foramen magnum(*) convinced Dart that this was a bipedal
human ancestor, which he named Australopithecus africanus (African
southern ape). Although the discovery became famous, Dart's interpretation
was rejected by the scientific community until the mid-1940's, following
the discovery of other similar fossils.
(*) Anatomical digression: the foramen magnum is the hole in the skull through which the spinal cord passes. In apes, it is towards the back of the skull, because of their quadrupedal posture. In humans it is at the bottom of the skull because our head is balanced on top of a vertical column. In australopithecines it is also placed forward from the ape position, although not always as far forward as in humans.
TM 1512, Australopithecus africanus (was Plesianthropus
transvaalensis)
Discovered by Robert Broom in 1936 at Sterkfontein
in South Africa (Broom 1936). The second australopithecine fossil found,
it consisted of parts of the face, upper jaw and braincase.
Sts 5, "Mrs Ples", Australopithecus africanus
Discovered by Robert Broom in 1947 at Sterkfontein in South
Africa. It is a very well preserved cranium of an adult. It has
usually been thought to be female, but there has been a recent
claim that it is male. It is the best specimen of africanus.
It is about 2.5 million years old, with a brain size of
about 485 cc. (It has recently been claimed that the fossils
Sts 5 and
Sts 14 (see next entry) were from the same individual)
Sts 14, Australopithecus africanus
Discovered by Robert Broom and J.T. Robinson in 1947 at
Sterkfontein (Broom and Robinson 1947). Estimated age is about
2.5 million years. This find consisted of a nearly complete
vertebral column, pelvis, some rib fragments, and part of a femur
of a very small adult. The pelvis is more human than
apelike, and is strong evidence that africanus was bipedal
(Brace et al. 1979), although it may not have had the strong
striding gait of modern humans (Burenhult 1993).
BOU-VP-12/130, Australopithecus garhi
Discovered by Yohannes Haile-Selassie in 1997 at Bouri in Ethiopia (Asfaw et al.
1999). This is a partial skull including an upper jaw with teeth which is
about 2.5 million years old.
MH1, Australopithecus sediba
Discovered by Lee Berger and his son in 2008 at
Malapa in South Africa (Berger et al. 2010). It is an almost complete skull and partial
skeleton of an 11 to 12 year old boy. It has a brain size of 420 cc and a height of 130 cm
(4'3"), and is about 1.85 million years old. It was bipedal with long arms suitable for climbing,
but had a number of humanlike traits in the skull, teeth and pelvis
Stw 573, "Little Foot",
Australopithecus
Discovered by Ron Clarke between 1994 and 1997 at Sterkfontein in South
Africa. Estimated age is 3.3 million years. This fossil consists, so far,
of many bones from the foot, leg, hand and arm, and a complete skull. More
bones are thought to be still embedded in rock. (Clarke and Tobias 1995,
Clarke 1998, Clarke 1999)
KNM-WT 17000, "The Black
Skull", Australopithecus aethiopicus
Discovered by Alan Walker in 1985 near West Turkana in Kenya.
Estimated age is 2.5 million years. This find is an intact,
almost complete cranium. The brain size is very small for a
hominid, about 410 cc, and the skull has a puzzling mixture of
primitive and advanced features. (Leakey and Lewin 1992)
TM 1517, Australopithecus
robustus (was Paranthropus robustus)
Discovered by a schoolboy, Gert Terblanche, in 1938 at Kromdraai
in South Africa (Broom 1938). It consisted of skull fragments,
including five teeth, and a few skeletal fragments. This was the
first specimen of robustus.
SK 48, Australopithecus robustus (was Paranthropus
crassidens)
Discovered by Mr. Fourie in 1950 at Swartkrans in South Africa
(Johanson and Edgar 1996). It is a cranium, probably belonging to
an adult female, and 1.5-2.0 million years old. It is the most
complete skull of robustus.
DNH 7, "Eurydice", Australopithecus robustus
Discovered by André Keyser in 1994 at the Drimolen cave in South
Africa. Estimated age is between 1.5 and 2.0 million years. This is an
almost complete skull and lower jaw of a female, one of the most complete
hominid skulls ever found, and the first significant fossil of a female
robustus. A fossil of a male robustus lower jaw, nicknamed
Orpheus (DNH 8), was found a few inches away from it. (Keyser 2000)
OH 5, "Zinjanthropus", "Nutcracker Man", Australopithecus
boisei
Discovered by Mary Leakey in 1959 at Olduvai Gorge in Tanzania (Leakey 1959).
Estimated age is 1.8 million years. It is an almost complete
cranium, with a brain size is about 530 cc. This was the first
specimen of this species. Louis Leakey briefly considered this a
human ancestor, but the claim was dropped when Homo habilis
was found soon afterwards.
KNM-ER 406, Australopithecus boisei
Discovered by Richard Leakey in 1969
near Lake Turkana in Kenya. This find was a complete, intact
cranium lacking only the teeth (Lewin 1987). Estimated age is
about 1.7 million years. The brain size is about 510 cc. (see
also ER 3733)
KNM-ER 732, Australopithecus boisei
Discovered by Richard Leakey in 1970 near Lake Turkana in Kenya.
The cranium is similar to that of OH 5, but is smaller and has
other differences such as the lack of a sagittal crest. The
estimated age is about 1.7 million years. The brain size is about
500 cc. Most experts believe this is a case of sexual dimorphism,
with the female being smaller than the male.
KGA10-525, Australopithecus boisei
Discovered by A. Amzaye in 1993 at Konso in Ethiopia (Suwa et al.
1997). This fossil consists of much of a skull, including a lower
jaw. The estimated age is 1.4 million years. The brain size is
estimated to be about 545 cc. Although it has many features
specific to boisei, it also lies outside the previously
known range of variation of that species in many ways, suggesting
that boisei (and maybe other hominid species) may have
been more variable than is often thought (Delson 1997).
Homo habilis
Discovered by the Leakeys in the early
1960's at Olduvai Gorge in Tanzania. A number of fragmentary
specimens were found (Leakey et al. 1964).
OH 24, "Twiggy", Homo habilis
Discovered by Peter Nzube in 1968 at Olduvai Gorge in Tanzania.
It consisted of an fairly complete but very badly crushed cranium
and seven teeth. It is about 1.85 million years old and has a
brain size of about 590 cc.
KNM-ER 1470, Homo habilis (or Homo rudolfensis?)
Discovered by Bernard Ngeneo in 1972 at Koobi Fora in Kenya
(Leakey 1973). Estimated age is 1.9 million years. This is the
most complete habilis skull known. Its brain size is 750
cc, large for habilis. It was originally dated at nearly 3
million years old, a figure that caused much confusion as at the
time it was older than any known australopithecines, from whom habilis
had supposedly descended. A lively debate over the dating of 1470
ensued (Lewin 1987; Johanson and Edey 1981; Lubenow 1992). The
skull is surprisingly modern in some respects. The braincase is
much larger and less robust than any australopithecine skull, and
is also without the large brow ridges typical of Homo erectus.
It is however very large and robust in the face. A number of leg
bones were found within a couple of kilometers, and are thought
to probably belong to the same species. The most complete, KNM-ER
1481, consisted of a complete left femur, both ends of a left
tibia and the lower end of a left fibula (the smaller of the two
lower leg bones). These are quite similar to the bones of modern
humans. (Creationist arguments)
KNM-ER 1805, "The Mystery
Skull", Homo habilis??
Discovered by Paul Abell in 1973 at Koobi Fora in Kenya (Leakey
1974). Estimated age is 1.85 million years. This find consisted
of much of a heavily built cranium containing many teeth. Its
brain size is about 600 cc. Some features, such as the sagittal
crest, are typical of A. boisei, but the teeth are too
small for that species. (Willis 1989; Day 1986) Various workers
have assigned it to almost every conceivable species, but many studies
have attributed it to Homo habilis (e.g. Wood 1991). A
recent cladistic study has placed it outside of Homo and most
similar to robust australopithecines, though different from any
named species. (Prat 2002)
KNM-ER 1813, Homo habilis
Discovered by Kamoya Kimeu in 1973 at Koobi Fora in Kenya (Leakey
1974). Estimated age is 1.8-1.9 million years. The brain size is 510 cc,
which is very small for habilis, but the fossil is an adult specimen,
probably of a female. Apart from its extremely small size, ER 1813 is
surprisingly modern, with a rounded skull, no sagittal crest, modest
eyebrow ridges, and a small amount of nasal prominence.
Stw 53, Homo habilis?
Discovered by Alun Hughes in 1976 at Sterkfontein in South Africa
(Hughes and Tobias 1977). Estimated age is 1.5 to 2 million
years. It consisted of a number of cranium fragments including
teeth. Many stone tools were found in the same layer.
OH 62, "Dik-dik hominid", Homo
habilis
Discovered by Tim White in 1986 at Olduvai Gorge in Tanzania
(Johanson and Shreeve 1989; Johanson et al. 1987). Estimated age
is 1.8 million years. The find consisted of portions of skull,
arm, leg bones and teeth. Almost all the features of the skull
closely resemble habilis fossils such as OH 24, ER 1813
and ER 1470, rather than the australopithecines. But the
estimated height is very small, maybe about 105 cm (3'5"),
and the arms are very long in proportion to the legs. These are
australopithecine traits, and in fact the skeletal bones are very
similar to those of Lucy. This find is significant because it is
the only fossil in which limb bones have been securely assigned
to habilis. Because of the small size, this was almost
certainly a female. As with the australopithecines, males would
have been considerably larger.
OH 65, Homo habilis
Discovered in 1995 at Olduvai Gorge in Tanzania. This fossil consisted
of a complete upper jaw and part of the lower face, dated at 1.8 million
years. Because of its similarities to the fossil ER 1470, its finders have
suggested that OH 65 may lead to a reclassification of the habiline fossils.
(Blumenschine et al. 2003, Tobias 2003)
Trinil 2, "Java Man", "Pithecanthropus I", Homo
erectus (was Pithecanthropus erectus)
Discovered by Eugene Dubois in 1891
near Trinil on the Indonesian island of Java. Its age is
uncertain, but thought to be about 700,000 years. This find
consisted of a flat, very thick skullcap, and a few teeth (which may
belong to orang-utans). The following year a femur was found
about 12 meters away (Theunissen 1989). The brain size is about
940 cc. The femur is fully modern, and many scientists now believe
that it belongs to a modern human.
(Creationist arguments)
"Peking Man", Homo
erectus (was Sinanthropus pekinensis)
Between 1929 and 1937, 14 partial craniums, 11 lower jaws, many
teeth, some skeletal bones and large numbers of stone tools were
discovered in the Lower Cave at Locality 1 of the Peking Man site
at Zhoukoudian (formerly Choukoutien), near Beijing (formerly
Peking), in China. Their age is estimated to be between 500,000
and 300,000 years old. (A number of fossils of modern humans were
also discovered in the Upper Cave at the same site in 1933.) The
most complete fossils, all of which were braincases or skullcaps,
are:
Most of the study on these fossils was done by Davidson Black until his death in 1934. Franz Weidenreich replaced him and studied the fossils until leaving China in 1941. The original fossils disappeared in 1941 while being shipped to the United States for safety during World War II, but excellent casts and descriptions remain. Since the war, other erectus fossils have been found at this site and others in China.
Sangiran 2,
"Pithecanthropus II", Homo erectus
Discovered by G.H.R. von Koenigswald in 1937 at Sangiran on the
Indonesian island of Java. This fossil is a braincase that is
very similar to the first Java Man skull cap, but more complete
and smaller, with a brain size of only about 815 cc.
OH 9, "Chellean Man", Homo erectus
Discovered by Louis Leakey in 1960 at
Olduvai Gorge in Tanzania (Leakey 1961). Estimated age is 1.5
million years. It consisted of a partial braincase with massive
browridges and a brain size of 1065 cc.
OH 12, "Pinhead", Homo erectus
Discovered by Margaret Cropper in 1962 at Olduvai Gorge in
Tanzania. It is similar to but less complete than OH 9, and
smaller, with an estimated brain size of only 750 cc. It is
estimated to be between 800,000 and 1200,000 years old. Anton (2004) has found a few more pieces of this skull, but it remains very fragmentary.
Sangiran 17, "Pithecanthropus VIII", Homo erectus
Discovered by Sastrohamidjojo Sartono in 1969 at Sangiran on
Java. This consists of a fairly complete cranium, with a brain
size of about 1000 cc. It is the most complete erectus
fossil from Java. This skull is very robust, with a slightly
projecting face and huge flaring cheekbones. It has been thought
to be about 800,000 years old, but a recent dating has given a
much older figure of nearly 1.7 million years. If the older date
is correct, it means Homo erectus migrated out of Africa
much earlier than previously thought.
KNM-ER 3733, Homo erectus (or Homo ergaster)
Discovered by Bernard Ngeneo in 1975 at Koobi Fora in Kenya.
Estimated age is 1.7 million years. This superb find consisted of
an almost complete cranium. The brain size is about 850 cc, and
the whole skull is similar to the Peking Man fossils. The
discovery of this fossil in the same stratum as ER 406 (A. boisei)
delivered the coup de grace to the single species hypothesis: the
idea that there has never been more than one hominid species at
any point in history. (Leakey and Walker 1976)
KNM-WT 15000, "Turkana Boy", Homo erectus (or Homo ergaster)
Discovered by Kamoya Kimeu in 1984 at Nariokotome near Lake
Turkana in Kenya (Brown et al. 1985; Leakey and Lewin 1992;
Walker and Leakey 1993; Walker and Shipman 1996). This is an
almost complete skeleton of an 11 or 12 year old boy, the only
major omissions being the hands and feet. (Some scientists
believe erectus matured faster than modern humans, and
that he was really about 9 years old (Leakey and Lewin 1992).) It
is the most complete known specimen of erectus, and also
one of the oldest, at 1.6 million years. The brain size was 880
cc, and it is estimated that it would have been 910 cc at
adulthood. The boy was 160 cm (5'3") tall, and would have
been about 185 cm (6'1") as an adult. This is surprisingly
tall, indicating that many erectus may have been as large
as modern humans. Except for the skull, the skeleton is very
similar to that of modern boys, although there are a number of
small differences. The most striking is that the holes
in his vertebrae, through which the spinal cord goes, have only about
half the cross-sectional area found in modern humans.
One suggested explanation for this is that the boy lacked the fine motor control we have in the thorax to control speech, implying that he wasn't nearly as fluent a speaker as modern humans are (Walker and Shipman 1996).
D2700, Homo georgicus
Discovered in 2001 at Dmanisi in Georgia. Estimated age is 1.8 million
years. It consisted of a mostly complete skull, including a lower jaw (D2735)
belonging to the same individual. (Vekua et al. 2002, Balter and Gibbons 2002)
At around 600 cc, this is the smallest and most primitive hominid skull ever
discovered outside of Africa.
This skull and two others discovered nearby form a near-perfect
transition between H. habilis and ergaster.
ATD6-69, Homo antecessor?
Discovered at Atapuerca in Spain. This is a partial face of a child
who was probably about 10 to 11.5 years old. This fossil is over
780,000 years old. (Bermudez de Castro et al. 1997)
"Heidelberg Man", "Mauer Jaw", Homo sapiens (archaic) (also Homo heidelbergensis)
Discovered by gravel pit workers in 1907 near
Heidelberg in Germany. Estimated age is between 400,000 and 700,000
years. This find consisted of a lower jaw with a receding chin and all its
teeth. The jaw is extremely large and robust, like that of Homo
erectus, but the teeth are at the small end of the erectus
range. It is often classified as Homo heidelbergensis, but has also
sometimes been considered to be a European Homo erectus.
"Rhodesian Man", "Kabwe", Homo
sapiens (archaic) (was Homo rhodesiensis)
Discovered by a laborer in 1921 at Broken Hill in Northern
Rhodesia (now Kabwe in Zambia) (Woodward 1921). This was a
complete cranium that was very robust, with large brow ridges and
a receding forehead. Estimated age is between 200,000 and 125,000
years. The brain size was about 1280 cc. (Creationist arguments)
Arago XXI, "
Tautavel Man", Homo sapiens (archaic) (also Homo
heidelbergensis)
Discovered at Arago in southern France in 1971 by Henry de Lumley.
Estimated age is 400,000 years. The fossil consists of a fairly complete
face, with 5 molar teeth and part of the braincase. The brain size was
about 1150 cc. The skull contains a mixture of features from archaic
Homo sapiens and Homo erectus, to which it is sometimes
assigned.
Petralona 1, Homo sapiens (archaic)
Discovered by villagers at Petralona in Greece in 1960. Estimated
age is 250,000-500,000 years. It could alternatively be
considered to be a late Homo erectus, and also has some
Neandertal characteristics. The brain size is 1220 cc, high for erectus
but low for sapiens, and the face is large with
particularly wide jaws. (Day 1986)
Atapuerca 5, Homo sapiens (archaic)
Discovered in the Sima de los Huesos ("Pit of Bones") at the Atapuerca
cave site in northern Spain in 1992 and 1993 by Juan-Luis Arsuaga. It is
about 300,000 years old, with a brain size of 1125 cc. The face is broad
with a huge nasal opening, and resembles Neandertals in some traits but
not in others. This is the most complete pre-modern skull in the entire
hominid fossil record. (Arsuaga et al. 1993; Johanson and Edgar 1996)
Feldhofer, Neanderthal 1, Homo sapiens
neanderthalensis
Discovered by Johann Fuhlrott in 1856 in a
small cave at Feldhofer in the Neander Valley in Germany. The find
consisted of a skullcap, thigh bones, part of a pelvis, some ribs, and some
arm and shoulder bones. The lower left arm had been broken in life, and as
a result the bones of the left arm were smaller than those of the
right. Fuhlrott recognized it as a primitive human, but the German
establishment headed by Rudolf Virchow rejected this view, incorrectly
claiming that it was a pathological modern human. (Trinkaus and Shipman
1992) In 1999, the
original site was rediscovered, and more bones from the same specimen
were recovered. (Creationist arguments)
(There were actually two earlier Neandertal finds. A partial cranium of a 2.5 year old child found in 1829 in Belgium was not recognized until 1936. An adult cranium found on Gibraltar in 1848 gathered dust in a museum until it was recognized as a Neandertal in 1864.)
"Spy 1 and 2", Homo sapiens neanderthalensis
Discovered by Marcel de Puydt and Max Lohest in 1886 at the Grotto of Spy
(pronounced Spee) d'Orneau in Belgium. Estimated age is about 60,000
years. This find consisted of two almost complete skeletons. The excellent
descriptions of the skeletons established that they were very old, and
largely discredited the idea that the Neandertal physique was a
pathological condition, but also erroneously concluded that Neandertal Man
walked with bent knees.
"Krapina Site", Homo sapiens
neanderthalensis
Discovered by Dragutin Gorjanovic-Kramberger in 1899 near Krapina in
Croatia. This site yielded significant remains from two to three dozen
individuals, and teeth and jaw fragments from dozens more. When Gorjanovic
published on his finds in 1906, it confirmed for once and for all that
Neandertals were not pathological modern humans.
"Old Man", Homo sapiens neanderthalensis
Discovered by Amedee and Jean Bouyssonie in 1908 near
La-Chapelle-aux-Saints in France. It is about 50,000 years old,
with a brain size of 1620 cc. This nearly complete skeleton was
reconstructed by Marcellin Boule, who
wrote a definitive and highly influential paper on it which
managed to be totally wrong in many of its conclusions. It exaggerated the apelike characteristics of
the fossil, popularizing the stereotype, which would last for
decades, of a stooping ape-man shuffling along on bent knees.
This specimen was between about 30 and 40 when he died, but had a
healed broken rib, severe arthritis of the hip, lower neck, back
and shoulders, and had lost most of his molar teeth. The fact
that he survived as long as he did indicates that Neandertals
must have had a complex social structure.
"Shanidar Site", Homo sapiens neanderthalensis
Ralph Solecki discovered 9 Neandertal skeletons between 1953 and
1960 at the Shanidar cave in Iraq. They are thought to be between
70,000 and 40,000 years old. One of them, Shanidar 4, had
apparently been buried with offerings of flowers (although this
interpretation has been disputed). In 1971 Solecki wrote a book, "Shanidar,
the First Flower People",
reversing the earlier stereotypes of semi-human brutes. Another
skeleton, Shanidar 1, was partially blind, one-armed and
crippled. His survival also is evidence of a complex social
structure.
"Saint-Cesaire Neandertal", Homo sapiens
neanderthalensis
Discovered by Francois Leveque in 1979 near the village of
Saint-Cesaire in France. It consisted of a badly crushed
skeleton. The skull was mostly complete, with only the back of
the cranium missing. It is dated at about 35,000 years old, and
is one of the latest Neandertals known. This find was of special
interest because it was found with tools that had previously been
assumed to belong to the Cro-Magnon culture, instead of the usual
Neandertal tool kit.
LB1, "Hobbit", Homo floresiensis
Discovered by an Australian/Indonesian team in 2003 at the Liang Bua cave on the Indonesian island of Flores.
This find consisted of an almost complete skull and a partial skeleton consisting of leg bones, parts of the pelvis, hands and feet, and some other fragments. LB1 was an adult, probably female, about 1 meter (3'3") tall with an extremely small brain size of 417cc. The skull has human-like teeth with a receding forehead and no chin. The fossil is 18,000 years old and was found with stone tools. This species is thought to be a dwarf form of Homo erectus. (Brown et al. 2004, Morwood et al. 2004, Lahr and Foley 2004)
"Cro-Magnon Man", Homo
sapiens sapiens (modern)
Discovered by workmen in 1868 at Cro-Magnon in France. Estimated
age is 30,000 years. The site yielded skeletons of 5 buried individuals, along with stone tools, carved reindeer
antlers, ivory pendants, and shells. The Cro-Magnons lived in
Europe between 35,000 and 10,000 years ago. They are virtually
identical to modern man, being tall and muscular and slightly
more robust than most modern humans. They were skilled hunters,
toolmakers and artists famous for the cave art at places such as Lascaux, Chauvet,
and Altamira.
There are a number of clear trends (which were neither continuous nor uniform) from early australopithecines to recent humans: increasing brain size, increasing body size, increasing use of and sophistication in tools, decreasing tooth size, decreasing skeletal robustness. There are no clear dividing lines between some of the later gracile australopithecines and some of the early Homo, between erectus and archaic sapiens, or archaic sapiens and modern sapiens.
Creationist Wayne Jackson quotes the paragraph to the left in an online article. Read my response here. |
Despite this, there is little consensus on what our family tree is. Everyone accepts that the robust australopithecines (aethiopicus, robustus and boisei) are not ancestral to us, being a side branch that left no descendants. Whether H. habilis is descended from A. afarensis, africanus, both of them, or neither of them, is still a matter of debate. It is possible that none of the known australopithecines is our ancestor.
A number of new genera and species have been discovered within the last decade (Ar. ramidus, Au. amanensis, Au. bahrelghazali, Au. garhi, Orrorin, Kenyanthropus, Sahelanthropus) and no consensus has yet formed on how they are related to each other or to humans. It is generally accepted that Homo erectus is descended from Homo habilis (or, at least, some of the fossils often assigned to habilis), but the relationship between erectus, sapiens and the Neandertals is still unclear. Neandertal affinities can be detected in some specimens of both archaic and modern sapiens.
This page is part of the Fossil Hominids FAQ at the talk.origins Archive.
Home Page |
Species |
Fossils |
Creationism |
Reading |
References
Illustrations |
What's New |
Feedback |
Search |
Links |
Fiction
http://www.talkorigins.org/faqs/homs/specimen.html, 22 May 2011
Copyright © Jim Foley
|| Email me