Browse Search Feedback Other Links Home Home The Talk.Origins Archive: Exploring the Creation/Evolution Controversy

Index to Creationist Claims,  edited by Mark Isaak,    Copyright © 2005
Previous Claim: CE101   |   List of Claims   |   Next Claim: CE130

Claim CE110:

Because of tidal friction, the moon is receding, and the earth's rotation is slowing down, at rates too fast for the earth to be billions of years old.

Source:

Barnes, Thomas G. 1982. Young age for the moon and earth. Impact 110 (Aug.). http://www.icr.org/index.php?module=articles&action=view&ID=204

Response:

  1. The moon is receding at about 3.8 cm per year. Since the moon is 3.85 × 1010 cm from the earth, this is already consistent, within an order of magnitude, with an earth-moon system billions of years old.

  2. The magnitude of tidal friction depends on the arrangement of the continents. In the past, the continents were arranged such that tidal friction, and thus the rates of earth's slowing and the moon's recession, would have been less. The earth's rotation has slowed at a rate of two seconds every 100,000 years (Eicher 1976).

  3. The rate of earth's rotation in the distant past can be measured. Corals produce skeletons with both daily layers and yearly patterns, so we can count the number of days per year when the coral grew. Measurements of fossil corals from 180 to 400 million years ago show year lengths from 381 to 410 days, with older corals showing more days per year (Eicher 1976; Scrutton 1970; Wells 1963; 1970). Similarly, days per year can also be computed from growth patterns in mollusks (Pannella 1976; Scrutton 1978) and stromatolites (Mohr 1975; Pannella et al. 1968) and from sediment deposition patterns (Williams 1997). All such measurements are consistent with a gradual rate of earth's slowing for the last 650 million years.

  4. The clocks based on the slowing of earth's rotation described above provide an independent method of dating geological layers over most of the fossil record. The data is inconsistent with a young earth.

Links:

Thompson, Tim, 2000. The recession of the Moon and the age of the Earth-Moon system. http://www.talkorigins.org/faqs/moonrec.html

Matson, Dave E., 1994. How good are those young-earth arguments? http://www.talkorigins.org/faqs/hovind/howgood-yea.html#proof5

References:

  1. Eicher, D. L., 1976. Geologic Time. Englewood Cliffs, New Jersey: Prentice-Hall.
  2. Mohr, R. E., 1975. Measured periodicities of the Biwabik (Precambrian) stromatolites and their geophysical significance. In: Rosenberg and Runcorn, pp. 43-56.
  3. Pannella, G., 1976. Tidal growth patterns in Recent and fossil mollusc bivalve shells: A tool for the reconstruction of paleotides. Naturwissenschaften 63: 539-543.
  4. Pannella, G., C. MacClintock and M. Thompson, 1968. Paleontological evidence of variation in length of synodic month since Late Cambrian. Science 162: 792-796.
  5. Rosenberg, G. D. and S. K. Runcorn (eds.), 1975. Growth Rhythms and the History of the Earth's Rotation. New York: Wiley.
  6. Scrutton, C. T., 1970. Evidence for a monthly periodicity in the growth of some corals. In: Palaeogeophysics, S. K. Runcorn, ed., London: Academic Press, pp. 11-16.
  7. Scrutton, C. T., 1978. Periodic growth features in fossil organisms and the length of the day and month. In: Tidal Friction and the Earth's Rotation. P. Brosche and J. Sundermann, eds., Berlin: Springer-Verlag, pp. 154-196.
  8. Wells, J. W., 1963. Coral growth and geochronometry. Nature 197: 948-950.
  9. Wells, J. W., 1970. Problems of annual and daily growth-rings in corals. In: Palaeogeophysics, S. K. Runcorn, ed., London: Academic Press, pp. 3-9.
  10. Williams, G. E., 1997. Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophysical Research Letters 24(4): 421-424.

Further Reading:

Pannella, G., 1972. Paleontological evidence on the Earth's rotational history since the early Precambrian. Astrophysics and Space Science 16: 212-237. (technical)

Rosenberg, G. D. and S. K. Runcorn (eds.), 1975. Growth Rhythms and the History of the Earth's Rotation. New York: Wiley. (technical)

Schopf, J. William (ed.), 1983. Earth's Earliest Biosphere. Its Origin and Evolution. Princeton, New Jersey: Princeton University Press. (technical)
Previous Claim: CE101   |   List of Claims   |   Next Claim: CE130

created 2001-2-18, modified 2004-9-7